Experimental Study on Calculation Methods for Short-term Cracks in High-strength Reinforced Concrete Beams

نویسندگان

  • Ruliang Zheng
  • Degao Tang
  • Yulong Xue
  • Zhen Liao
چکیده

Abstract: High-strength steel has increasingly become widely used among various engineering practices, but the relevant provisions of the codes lag behind its development. Six sets of experiments on simple supported beams reinforced with HTB600 and HTB700 rebars subject to bending loading were conducted in this study to 1) investigate the conditions of crack development, 2) contrast the calculating modes of short-term crack width between Chinese and European concrete codes, and 3) analyze European applicability and precision pertaining to high-strength reinforcement of beams. According to the experiments and research, when the calculation formulae obtained from Chinese codes were used to calculate the average crack spacing of high-strength reinforced concrete beams, the error relative to that obtained in the experiment reached approximately 20%. Based on this, a revised formula for the calculation of average crack spacing is proposed in this article, and the results of these calculations align with the results obtained from the experiment. In addition, this study also demonstrates that the maximum cracking spacing calculated by adhering to Eurocode standards yielded no significant deviation as compared to the experimental results. However, owing to a difference in the crack width exceeding 20% being observed between the results obtained under Eurocode standards and the experimental results, the calculation methods need to be further improved for better applicability of high-strength reinforced rebars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Behavior of Coupling Beams Strengthened with Carbon Fiber Reinforced Polymer Sheets

In this research, using the results of 6 tests, the effect of Carbon Fiber Reinforced Polymer (CFRP) sheets on the behavior of reinforced concrete coupling beams of shear walls is studied. First, in the experimental part of the study, four coupling beams with different reinforcements were manufactured and tested. Then, after the failure of the specimens, two of them were rehabilitated and stren...

متن کامل

AdiMaulana, Koichiro Watanabe

This article presents the analysis of experimental values regarding cracking pattern, specific strains and deformability for reinforced high strength concrete beams. The beams have the concrete class C80/95 and a longitudinal reinforcement ratio of 2.01%, respectively 3.39%. The elements were subjected to flexure under static short-term and long-term loading. The experimental values are compare...

متن کامل

Flexural Testing of High Strength Reinforced Concrete Beams Strengthened with CFRP Sheets

The objective of this study is to investigate the effectiveness of externally bonded CFRP sheets to increase the flexural strength of reinforced high strength concrete (HSC) beams. Four-point bending flexural tests to complete failure on six concrete beams, strengthened with different layouts of CFRP sheets were conducted. Three-dimensional nonlinear finite element (FE) models were adopted by A...

متن کامل

Experimental and Numerical Study of Energy Absorption Capacity of Glass Reinforced SCC Beams

Various experimental studies have been carried out on glass fiber reinforced concrete (GFRC), but in limited studies, the behavior of this type of concrete is evaluated using finite element method (FEM). In this study an analysis model is presented for predicting energy absorption capacity of glass fiber reinforced self-compacting concrete (GFRCSCC) beams and the results are compared with exper...

متن کامل

Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams

A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017